

Welcome to GQuantum’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gquantum	

 	
 	
 gquantum.backend	

 	
 	
 gquantum.qubit	

 	
 	
 gquantum.utils	

Index

 A
 | C
 | G
 | H
 | I
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | X
 | Y
 | Z

A

 	
 	amplitudes (gquantum.qubit.Qubit attribute)

C

 	
 	ccnot() (gquantum.qubit.Qubit method)

 	
 	cnot() (gquantum.qubit.Qubit method)

 	cx() (gquantum.qubit.Qubit method)

G

 	
 	gquantum (module)

 	gquantum.backend (module)

 	
 	gquantum.qubit (module)

 	gquantum.utils (module)

H

 	
 	h() (gquantum.qubit.Qubit method)

I

 	
 	id() (gquantum.qubit.Qubit method)

 	
 	iqft() (in module gquantum.utils)

M

 	
 	measure() (gquantum.qubit.Qubit method)

 	measure_x() (gquantum.qubit.Qubit method)

 	measure_y() (gquantum.qubit.Qubit method)

 	measure_z() (gquantum.qubit.Qubit method)

 	multi_controlled_gate() (gquantum.qubit.Qubit method)

 	
 	multi_controlled_p() (gquantum.qubit.Qubit method)

 	multi_controlled_rx() (gquantum.qubit.Qubit method)

 	multi_controlled_ry() (gquantum.qubit.Qubit method)

 	multi_controlled_rz() (gquantum.qubit.Qubit method)

 	multi_qubit_measure() (gquantum.qubit.Qubit method)

N

 	
 	num_qubits (gquantum.qubit.Qubit attribute)

P

 	
 	p() (gquantum.qubit.Qubit method)

Q

 	
 	qft() (in module gquantum.utils)

 	
 	Qubit (class in gquantum.qubit)

R

 	
 	reset() (gquantum.qubit.Qubit method)

 	reset_all() (gquantum.qubit.Qubit method)

 	
 	rx() (gquantum.qubit.Qubit method)

 	ry() (gquantum.qubit.Qubit method)

 	rz() (gquantum.qubit.Qubit method)

S

 	
 	s() (gquantum.qubit.Qubit method)

 	s_dagger() (gquantum.qubit.Qubit method)

 	simulator_func_get_amplitudes() (gquantum.qubit.Qubit method)

 	
 	simulator_func_load_amplitudes() (gquantum.qubit.Qubit method)

 	simulator_func_multi_measure_without_collapse() (gquantum.qubit.Qubit method)

 	simulator_func_save_amplitudes() (gquantum.qubit.Qubit method)

 	swap() (gquantum.qubit.Qubit method)

T

 	
 	t() (gquantum.qubit.Qubit method)

 	
 	t_dagger() (gquantum.qubit.Qubit method)

 	toffoli() (gquantum.qubit.Qubit method)

X

 	
 	x() (gquantum.qubit.Qubit method)

Y

 	
 	y() (gquantum.qubit.Qubit method)

Z

 	
 	z() (gquantum.qubit.Qubit method)

gquantum package

Submodules

gquantum.backend module

This module contains internal operations on amplitudes of qubits.

gquantum.qubit module

This module contains initialization and operation on qubits.

This module contains all main quantum gates and measurements on quantum
computation. Initializes the class Qubit with the number of required qubits,
and then uses the quantum gates and measurements as functions inside the
class.

	
class gquantum.qubit.Qubit(num_qubits)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates qubits register.

	
num_qubits

	The number of qubits in register.

	
amplitudes

	The amplitudes of qubits in register.

	
ccnot(control_index_1, control_index_2, target_index)

	Applies the CCNOT(toffoli) gate to three qubits.

	Parameters

	
	control_index_1 – Index of the first control qubit, starts from 0.

	control_index_2 – Index of the second control qubit, starts from 0.

	target_index – Index of the target qubit, starts from 0.

	
cnot(control_index, target_index)

	Applies the controlled-NOT(CNOT) gate to a pair of qubits.

	Parameters

	
	control_index – Index of the control qubit, starts from 0.

	target_index – Index of the target qubit, starts from 0.

	
cx(control_index, target_index)

	Applies the controlled-NOT(CX) gate to a pair of qubits.

	Parameters

	
	control_index – Index of the control qubit, starts from 0.

	target_index – Index of the target qubit, starts from 0.

	
h(qubit_index)

	Applies the Hadamard transformation to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
id(qubit_index)

	Applies the Identity gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
measure(qubit_index)

	Performs a measurement of a single qubit in computational(Pauli Z) basis.

	Parameters

	qubit_index – Index of qubit to be measured, starts from 0.

	Returns

	“0” or “1” as type string. Represent the state |0> and |1> .

	
measure_x(qubit_index)

	Performs a measurement of a single qubit in Pauli X basis.

	Parameters

	qubit_index – Index of qubit to be measured, starts from 0.

	Returns

	“0” or “1” as type string. Represent the state |0> and |1> .

	
measure_y(qubit_index)

	Performs a measurement of a single qubit in Pauli Y basis.

	Parameters

	qubit_index – Index of qubit to be measured, starts from 0.

	Returns

	“0” or “1” as type string. Represent the state |0> and |1> .

	
measure_z(qubit_index)

	Performs a measurement of a single qubit in Pauli Z(computational) basis.

	Parameters

	qubit_index – Index of qubit to be measured, starts from 0.

	Returns

	“0” or “1” as type string. Represent the state |0> and |1> .

	
multi_controlled_gate(gate, qubit_index, control_index_list)

	Applies a specific gate to a qubit with controls of other qubits.

	Parameters

	
	gate – Specific gate to be executed. comes from
“X, Y, Z, H, S, T, Id, SDagger, TDagger”.

	qubit_index – Index of the target qubit, starts from 0.

	control_index_list – List of indices of the control qubits,
the index in this list should starts from 0.

	
multi_controlled_p(theta, qubit_index, control_index_list)

	Applies the phase shift gate to a qubit with controls of other qubits.

The phase shift gate manipulates a qubit as a rotation with an angle theta
about Z-axis, which is the same as the RZ gate together with a global phase shift.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of the target qubit, starts from 0.

	control_index_list – List of indices of the control qubits,
the index in this list starts from 0.

	
multi_controlled_rx(theta, qubit_index, control_index_list)

	Applies the RX gate to a qubit with controls of other qubits.

The RX gate manipulates a qubit as a rotation with an angle theta
about X-axis.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of the target qubit, starts from 0.

	control_index_list – List of indices of the control qubits,
the index in this list should starts from 0.

	
multi_controlled_ry(theta, qubit_index, control_index_list)

	Applies the RY gate to a qubit with controls of other qubits.

The RY gate manipulates a qubit as a rotation with an angle theta
about Y-axis.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of the target qubit, starts from 0.

	control_index_list – List of indices of the control qubits,
the index in this list should starts from 0.

	
multi_controlled_rz(theta, qubit_index, control_index_list)

	Applies the RZ gate to a qubit with controls of other qubits.

The RZ gate manipulates a qubit as a rotation with an angle theta
about Z-axis.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of the target qubit, starts from 0.

	control_index_list – List of indices of the control qubits,
the index in this list should starts from 0.

	
multi_qubit_measure(qubit_index_list)

	Performs measurements of qubits in computational(Pauli Z) basis.

	Parameters

	qubit_index_list – List of indices of qubits to be measured,
the index in this list should starts from 0.

	Returns

	A list with elements “0” or “1” as type string, which represent the
state |0> and |1> for qubits with the descending order.

example:

[‘1’, ‘0’, ‘0’]

The ‘1’ represents the state |1> for the qubit with the biggest index.

	
p(theta, qubit_index)

	Applies the phase shift gate to a qubit.

The single qubit phase shift gate manipulates a qubit as a rotation with an angle theta
about Z-axis, which is the same as the RZ gate together with an unobservable global phase shift.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
reset(qubit_index)

	Reset a qubit to |0>.

When the qubit is entangled with other qubits, those qubits would also
collapse with the role of quantum measurement.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
reset_all()

	Reset all qubits to |0>.

	
rx(theta, qubit_index)

	Applies the RX gate to a qubit.

The RX gate manipulates a qubit as a rotation with an angle theta
about X-axis.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
ry(theta, qubit_index)

	Applies the RY gate to a qubit.

The RY gate manipulates a qubit as a rotation with an angle theta
about Y-axis.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
rz(theta, qubit_index)

	Applies the RZ gate to a qubit.

The RZ gate manipulates a qubit as a rotation with an angle theta
about Z-axis.

	Parameters

	
	theta – Angle about which the qubit is to be rotated.

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
s(qubit_index)

	Applies the π/4 phase gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
s_dagger(qubit_index)

	Applies the adjoint of S gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
simulator_func_get_amplitudes()

	Returns the amplitudes of this quantum register.

This function is not directly performable on a real quantum computer.

	
simulator_func_load_amplitudes(file='amplitudes.npy')

	Load the amplitudes of this quantum register to a file.

This function is not directly performable on a real quantum computer.

	Parameters

	file – Path to the file to load amplitudes.

	
simulator_func_multi_measure_without_collapse(qubit_index_list, measure_times)

	Performs measurements several times without collapse.

This function is not directly performable on a real quantum computer.

	Parameters

	
	qubit_index_list – List of indices of qubits to be measured,
the index in this list should starts from 0.

	measure_times – Number of times to perform measurements.

	Returns

	A dict with keys as measured states and values as numbers of
times measured in that states. The qubits represented are
in descending order.

example:

{‘00’: 490, ‘11’: 510}

	
simulator_func_save_amplitudes(file='amplitudes.npy')

	Save the amplitudes of this quantum register to a file.

This function is not directly performable on a real quantum computer.

	Parameters

	file – Path to the file to save amplitudes.

	
swap(qubit_1_index, qubit_2_index)

	Applies the SWAP gate to a pair of qubits.

	Parameters

	
	qubit_1_index – Index of the first qubit to be swapped, starts from 0.

	qubit_2_index – Index of the first qubit to be swapped, starts from 0.

	
t(qubit_index)

	Applies the π/8 phase gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
t_dagger(qubit_index)

	Applies the adjoint of T gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
toffoli(control_index_1, control_index_2, target_index)

	Applies the toffoli(CCNOT) gate to three qubits.

	Parameters

	
	control_index_1 – Index of the first control qubit, starts from 0.

	control_index_2 – Index of the second control qubit, starts from 0.

	target_index – Index of the target qubit, starts from 0.

	
x(qubit_index)

	Applies the Pauli X gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
y(qubit_index)

	Applies the Pauli Y gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

	
z(qubit_index)

	Applies the Pauli Z gate to a qubit.

	Parameters

	qubit_index – Index of qubit to which the gate should be applied, starts from 0.

gquantum.utils module

This module contains public GQuantum utilities.

This module contains all public GQuantum utilities which consist of
assembled operations on the class Qubit.

	
gquantum.utils.iqft(qubits, index_list)

	Applies inverse quantum Fourier transformation to a list of qubits.

The inverse Fourier transformation is consistent with the most conventional
notation, which does not have a “-” sign on the imaginary part.

	Parameters

	
	qubits – Qubit object which contains all qubits to be transformed.

	index_list – List of indices of the qubits to be transformed.
The transformation operates according to the list order,
and the index in this list starts from 0.

	
gquantum.utils.qft(qubits, index_list)

	Applies quantum Fourier transformation to a list of qubits.

The Fourier transformation is consistent with the most conventional notation,
which has a “-” sign on the imaginary part.

	Parameters

	
	qubits – Qubit object which contains all qubits to be transformed.

	index_list – List of indices of the qubits to be transformed.
The transformation operates according to the list order,
and the index in this list starts from 0.

Module contents

gquantum

	gquantum package
	Submodules

	gquantum.backend module

	gquantum.qubit module

	gquantum.utils module

	Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to GQuantum’s documentation!

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

